TABLE OF CONTENTS

Introduction 2
The Pressure Treating Process 3
Types of Wood Preservatives 3
Code Acceptance & Standards 4
Incising 4
AWPA Use Category System 5

Use Category Selection Guide 6
UC1 6
UC2 6
UC3A 6
UC3B 7
UC4A 7
UC4B 7
UC4C 8
UC5A 8
UC5B 8
UC5C 9
UCFA 9
UCFB 9

Service Conditions Use Category Selection Guide 10
Quality Assurance 11

Fasteners & Connectors 10

Best Management Practice for the Use of Treated Wood in Aquatic and Other Sensitive Environments 13

Use and Handling Recommendations and Field Treatments 12

Specification Guide to Treated Wood End Uses 16

DISCLAIMER

While the Western Wood Preservers Institute believes the information contained in this document is accurate and current as of the date of publication, this document is intended for general informational purposes only. The Institute makes no warranty or representation, either expressed or implied, as to the reliability or accuracy of the information presented herein. The Institute does not assume any liability resulting from use of or reliance upon such information by any party. This document should not be construed as an endorsement or warranty, direct or implied, of any specific treated wood product or preservative, in terms of performance, environmental impact, or safety. Nothing in this document should be construed as a recommendation to violate any federal, provincial, state or municipal law, rule or regulation, and any party using or producing pressure treated wood products should review all such laws, rules or regulations prior to using or producing treated wood products. This document does not represent an agreement by members of the Institute to act or refuse to act in any prescribed manner. Any decision to buy or sell a treated wood product or preservative, or the terms thereof, is in the sole discretion of the buyer and seller.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction</td>
<td>2</td>
</tr>
<tr>
<td>The Pressure Treating Process</td>
<td>3</td>
</tr>
<tr>
<td>Types of Wood Preservatives</td>
<td>3</td>
</tr>
<tr>
<td>Code Acceptance & Standards</td>
<td>4</td>
</tr>
<tr>
<td>Incising</td>
<td>4</td>
</tr>
<tr>
<td>AWPA Use Category System</td>
<td>5</td>
</tr>
<tr>
<td>Use Category Selection Guide</td>
<td>6</td>
</tr>
<tr>
<td>UC1</td>
<td>6</td>
</tr>
<tr>
<td>UC2</td>
<td>6</td>
</tr>
<tr>
<td>UC3A</td>
<td>6</td>
</tr>
<tr>
<td>UC3B</td>
<td>7</td>
</tr>
<tr>
<td>UC4A</td>
<td>7</td>
</tr>
<tr>
<td>UC4B</td>
<td>7</td>
</tr>
<tr>
<td>UC4C</td>
<td>8</td>
</tr>
<tr>
<td>UC5A</td>
<td>8</td>
</tr>
<tr>
<td>UC5B</td>
<td>8</td>
</tr>
<tr>
<td>UC5C</td>
<td>8</td>
</tr>
<tr>
<td>UCFA</td>
<td>9</td>
</tr>
<tr>
<td>UCFB</td>
<td>9</td>
</tr>
<tr>
<td>Service Conditions Use Category Selection Guide</td>
<td>10</td>
</tr>
<tr>
<td>Quality Assurance</td>
<td>11</td>
</tr>
<tr>
<td>Fasteners & Connectors</td>
<td>10</td>
</tr>
<tr>
<td>Best Management Practice for the Use of Treated Wood in Aquatic and Other Sensitive Environments</td>
<td>13</td>
</tr>
<tr>
<td>Use and Handling Recommendations and Field Treatments</td>
<td>12</td>
</tr>
<tr>
<td>Specification Guide to Treated Wood End Uses</td>
<td>16</td>
</tr>
</tbody>
</table>

DISCLAIMER While the Western Wood Preservers Institute believes the information contained in this document is accurate and current as of the date of publication, this document is intended for general informational purposes only. The Institute makes no warranty or representation, either expressed or implied, as to the reliability or accuracy of the information presented herein. The Institute does not assume any liability resulting from use of or reliance upon such information by any party. This document should not be construed as an endorsement or warranty, direct or implied, of any specific treated wood product or preservative, in terms of performance, environmental impact, or safety. Nothing in this document should be construed as a recommendation to violate any federal, provincial, state or municipal law, rule or regulation, and any party using or producing pressure treated wood products should review all such laws, rules or regulations prior to using or producing treated wood products. This document does not represent an agreement by members of the Institute to act or refuse to act in any prescribed manner. Any decision to buy or sell a treated wood product or preservative, or the terms thereof, is in the sole discretion of the buyer and seller.
Introduction
Most untreated wood will decompose when four conditions required for decay and insect attack occur: high moisture, a favorable temperature, oxygen, and a food source (wood fiber). If any one of these conditions is removed, infestation and decomposition cannot occur. Eliminating wood fiber as a food source by using pressure-treated wood products is an easy and practical solution. Research has shown that wood can be expected to last for many decades when properly treated and installed for its intended use.

The map below indicates, by region, the level of wood deterioration throughout the United States. Because deterioration zones range from moderate to severe across most of the country, today’s design/build professionals realize the importance of specifying and building with treated wood. The International Building Codes recognize the problems as well in certain applications and the effectiveness of properly treated wood in enduring those situations. For those building applications, the codes require the use of pressure treated wood.

Today’s science has developed preservative treatments that are odorless and colorless, and leave the wood paintable and dry to the touch. Treatment with preservatives protects wood that is exposed to the elements, in contact with the ground, or subjected to high humidity.

The Pressure-Treating Process
Pressure-treated wood is the end result of a highly controlled process where chemical preservatives are forced into the wood’s cells within a closed pressure-cylinder. The chemical preservatives react with the wood fiber to form a treated wood product resistant to attack by insects, decay, fungus and marine borers.

Reaction of the chemical preservative within the wood’s fiber begins during the treating cycle. The time needed to maximize fixation or stabilization of the preservative can range from several hours to several days, depending on surrounding temperatures and humidity that vary greatly with locale and seasonal conditions.

Treated wood must meet minimum preservative penetration and retention requirements for use in a particular service condition. Penetration refers to the depth a preservative must permeate into the wood fiber. The amount of preservative that remains in the wood after the pressure-treating process is complete is called retention. Retention levels are expressed in pounds of preservative per cubic foot (pcf) of wood fiber and the higher the retention, the harsher the service condition the wood may be exposed to.

Types of Wood Preservatives
There are three broad classes of preservatives used for the pressure treatment of wood products:

- Waterborne preservatives, where water is the carrier for the preservative chemicals, serve a wide variety of uses. These include residential, commercial, marine, agricultural, recreational and industrial applications.

- Oil-type preservatives are used primarily for industrial applications including utility poles, piling, posts, glulam beams and timbers.

- Creosote preservatives, including creosote/coal-tar mixtures, protect railroad ties, marine pilings and utility poles.

Waterborne preservatives are commonly specified for most residential, commercial and marine building applications. Waterborne treatments are clean in appearance, odorless and paintable. They are also EPA-registered for both interior and exterior use without a sealer.
Introduction

Most untreated wood will decompose when four conditions required for decay and insect attack occur: high moisture, a favorable temperature, oxygen, and a food source (wood fiber). If any one of these conditions is removed, infestation and decomposition cannot occur. Eliminating wood fiber as a food source by using pressure-treated wood products is an easy and practical solution. Research has shown that wood can be expected to last for many decades when properly treated and installed for its intended use.

The map below indicates, by region, the level of wood deterioration throughout the United States. Because deterioration zones range from moderate to severe across most of the country, today’s design/build professionals realize the importance of specifying and building with treated wood. The International Building Codes recognize the problems as well in certain applications and the effectiveness of properly treated wood in enduring those situations. For those building applications, the codes require the use of pressure treated wood.

Today’s science has developed preservative treatments that are odorless and colorless, and leave the wood paintable and dry to the touch. Treatment with preservatives protects wood that is exposed to the elements, in contact with the ground, or subjected to high humidity.

The Pressure-Treating Process

Pressure-treated wood is the end result of a highly controlled process where chemical preservatives are forced into the wood’s cells within a closed pressure-cylinder. The chemical preservatives react with the wood fiber to form a treated wood product resistant to attack by insects, decay, fungus and marine borers.

Reaction of the chemical preservative within the wood’s fiber begins during the treating cycle. The time needed to maximize fixation or stabilization of the preservative can range from several hours to several days, depending on surrounding temperatures and humidity that vary greatly with locale and seasonal conditions.

Treated wood must meet minimum preservative penetration and retention requirements for use in a particular service condition. Penetration refers to the depth a preservative must permeate into the wood fiber. The amount of preservative that remains in the wood after the pressure-treating process is complete is called retention. Retention levels are expressed in pounds of preservative per cubic foot (pcf) of wood fiber and the higher the retention, the harsher the service condition the wood may be exposed to.

Types of Wood Preservatives

There are three broad classes of preservatives used for the pressure treatment of wood products:

• Waterborne preservatives, where water is the carrier for the preservative chemicals, serve a wide variety of uses. These include residential, commercial, marine, agricultural, recreational and industrial applications.

• Oil-type preservatives are used primarily for industrial applications including utility poles, piling, posts, glulam beams and timbers.

• Creosote preservatives, including creosote/coal-tar mixtures, protect railroad ties, marine pilings and utility poles.

Waterborne preservatives are commonly specified for most residential, commercial and marine building applications. Waterborne treatments are clean in appearance, odorless and paintable. They are also EPA-registered for both interior and exterior use without a sealer.
Code Acceptance & Standards

Preservative treated wood products are accepted for building code compliance either by reference to the American Wood Protection Association (AWPA) Standards or through the product evaluation process of the International Code Council Evaluation Service (ICC-ES).

The AWPA is the principal standards-writing body for wood preservation in the United States. Their Book of Standards establishes what preservatives and chemical formulations are appropriate for common applications; sets treating procedures; establishes wood species requirements and testing procedures, and provides guidance on quality control and inspection. AWPA Standards ensure that properly treated wood products perform satisfactorily for their intended service condition. For code acceptance, products treated in accordance with AWPA Standards must reference the Standard and quality mark of a code-approved inspection agency.

National Evaluation Report (NER) or Evaluation Service Reports (ESR) issued by the International Code Council-Evaluation Service (ICC-ES) also provide assurance that treated wood products produced under report acceptance criteria and quality monitored by an American Lumber Standard Committee (ALS) or equivalent third party agency meet code performance standards. Preservative treated wood manufactured and monitored quality-marked under ICC-ES criteria must reference the report number on the product and identify the code-approved inspection agency.

Incising

Species and commodities that are difficult to consistently and uniformly penetrate with preservatives are required to be incised prior to treatment. The exact attributes of incising are not defined in AWPA Standards but material must be adequately incised so it will meet the preservative penetration and retention requirements in the appropriate Use Category Commodity Specification. Incising is a mechanical process wherein numerous longitudinal incisions are made with chisel-type or knife-type teeth into the wood surfaces, parallel to the grain direction. Incising increases preservative retention and penetration during the treating process by increasing the amount of exposed, easily penetrated end-grain and by increasing the side-grain surface area.

While preservative treatment increases durability, the incising process is known to reduce certain strength values of structural lumber. The type and amount of strength reduction is dependent on the depth and density of the incisions and the resultant wood damage caused by the crushing of wood fibers. National Design Specification offer fundamental guidelines for accessing potential strength losses in incised wood.

Allowable Stress Design Adjustment Factor

The National Design Specification for Wood Construction (NDS) (ANSI/AF&PA 2005) recommends an allowable stress design adjustment factor C_i for treated and incised lumber. This factor imposes a 5% reduction in MOE and 20% reduction in allowable design stress in bending, tensile, and compressive strength for both dry and green material. To qualify for the reduction, incising must be limited to the depth, density and length specified in the NDS.

Effects of Species, Grades, Incising and Treatment on Strength and Stiffness

In 1998 and again in 2003, Forest Product Laboratory tested three populations of nominal 2 by 4, machine-stress-rated Hem-Fir, Douglas-fir and Spruce-Pine-Fir, kiln-dried to ≤19% and incised to 0.2 in. or 0.4 in. at densities of 660 or 800 incisional length. Selected specimens were then full-cell treated with ACZA (Douglas-fir), ACZA or CCA-C (Hem-Fir) or ACQ-B or CCA-C (SPF). The results showed no practically important species-related differences, few gross differences related to grade within species, and few significant differences among the preservatives.

However, the tests did find that depth of incision is the critical factor on determining the reduction of mechanical properties. The bending strength and stiffness adjustments are dependent on the incision dimensions (i.e., reduced cross section) and lumber size. Incising reduces section modulus and therefore reduces bending strength and stiffness. When incising exceeds the allowances in the NDS, users must evaluate the impact on strength for their application.

AWPA Use Category System

The AWPA Use Category System (UCS) specifies the wood treatment required based on many variables including the product, desired wood species and the environment or hazard exposure of the intended end use. There are six Use Categories, including fire retardant applications, which describe the exposure conditions that wood may be subject to in service. Each exposure has a different degree of biodegradation hazard and/or product service-life expectation. The easy-to-use system helps specifiers and product users locate the appropriate AWPA Standards that provide recommendations for a specific combination of product and use environment.

All treated wood commodities can be placed into one of the Use Categories, based on exposures and expected product performance. The user of the UCS should first find the appropriate Use Category for the expected service conditions and planned applications in the Specification Guide to Treated Wood End Uses.

Generally, as the Use Category number rises, there is a consequent increase in the required preservative retention or limitation of preservative types. The dimensions of the treated product may also influence the depth-of-penetration requirement. The lower the Use Category number, the least amount of protection is required as it relates to the level of protection necessary for decay or insect attack. Conversely, the highest Use Category number provides the highest degree of protection to wood used in the most severe service conditions.
Preservative treated wood products are accepted for building code compliance either by reference to the American Wood Protection Association (AWPA) Standards or through the product evaluation process of the International Code Council Evaluation Service (ICC-ES).

The AWPA is the principal standards-writing body for wood preservation in the United States. Their Book of Standards establishes what preservatives and chemical formulations are appropriate for common applications; sets treating procedures; establishes wood species requirements and testing procedures, and provides guidance on quality control and inspection. AWPA Standards ensure that properly treated wood products perform satisfactorily for their intended service condition. For code acceptance, products treated in accordance with AWPA Standards must reference the Standard and quality mark of a code-approved inspection agency.

National Evaluation Report (NER) or Evaluation Service Reports (ESR) issued by the International Code Council-Evaluation Service (ICC-ES) also provide assurance that treated wood products produced under report acceptance criteria and quality monitored by an American Lumber Standard Committee (ALSC) or equivalent third party agency meet code performance standards. Preservative treated wood manufactured and monitored quality-marked under ICC-ES criteria must reference the report number on the product and identify the code-approved inspection agency.

Effects of Species, Grades, Incising and Treatment on Strength and Stiffness

In 1998 and again in 2003, Forest Product Laboratory tested three populations of nominal 2 by 4, machine-stress-rated Hem-Fir, Douglas-fir and Spruce-Pine-Fir, kiln-dried to ≤ 19% and incised to 0.2 in. or 0.4 in. at densities of 660 or 800 incisions/ft². Selected specimens were then full-cell treated with ACZA (Douglas-fir), ACZA or CCA-C (Hem-Fir) or ACQ-B or CCA-C (SPF).

The results showed no practically important species-related differences, few gross differences related to grade within species, and few significant differences among the preservatives. However, the tests did find that depth of incision is the critical factor on determining the reduction of mechanical properties. The bending strength and stiffness adjustments are dependent on the incision dimensions (i.e., reduced cross section) and lumber size. Incising reduces section modulus and therefore reduces bending strength and stiffness. When incising exceeds the allowances in the NDS, users must evaluate the impact on strength for their application.

AWPA Use Category System

The AWPA Use Category System (UCS) specifies the wood treatment required based on many variables including the product, desired wood species and the environment or hazard exposure of the intended end use. There are six Use Categories, including fire retardant applications, which describe the exposure conditions that wood may be subject to in service. Each exposure has a different degree of biodegradation hazard and/or product service-life expectation. The easy-to-use system helps specifiers and product users locate the appropriate AWPA Standards that provide recommendations for a specific combination of product and use environment.

All treated wood commodities can be placed into one of the Use Categories, based on exposures and expected product performance. The user of the UCS should first find the appropriate Use Category for the expected service conditions and planned applications in the Specification Guide to Treated Wood End Uses.

Generally, as the Use Category number rises, there is a consequent increase in the required preservative retention or limitation of preservative types. The dimensions of the treated product may also influence the depth-of-penetration requirement. The lower the Use Category number, the least amount of protection is required as it relates to the level of protection necessary for decay or insect attack. Conversely, the highest Use Category number provides the highest degree of protection to wood used in the most severe service conditions.
Use Category Selection Guide

UC2 Wood and wood-based materials used for interior construction that are not in contact with the ground, but may be subject to dampness. These products are continuously protected from the weather, but may be exposed to occasional sources of moisture.

SERVICE CONDITIONS: Interior construction, damp above ground
USE ENVIRONMENT: Protected from weather, but subject to sources of moisture
COMMON AGENTS OF DETERIORATION: Decay fungi and insects
TYPICAL APPLICATIONS: Interior construction

UC3B Wood and wood-based materials used in exterior construction and not in contact with the ground. Materials do not require an exterior coating, but may be finished to achieve a desired aesthetic appearance.

SERVICE CONDITIONS: Exterior construction, above ground, uncoated, poor water runoff
USE ENVIRONMENT: Exposed to all weather cycles, and prolonged wetting
COMMON AGENTS OF DETERIORATION: Decay fungi and insects
TYPICAL APPLICATIONS: Decking, deck joists, sill, walkways, railings and fence pickets

UC4A Wood and wood-based materials used in contact with the ground, fresh water, or other situations favorable to deterioration.

SERVICE CONDITIONS: Ground contact or fresh water, non-critical components
USE ENVIRONMENT: For normal ground contact or fresh water contact
COMMON AGENTS OF DETERIORATION: Decay fungi and insects
TYPICAL APPLICATIONS: Permanent wood foundations, building poles, horticultural posts, utility poles in regions of low decay potential, in regions of high potential for decay

UC4B Wood and wood-based materials used in contact with the ground either in severe environments, such as horticultural sites, in climates with a high potential for deterioration, in critically important components.

SERVICE CONDITIONS: Ground contact, fresh water, important construction components, or in salt water splash zones
USE ENVIRONMENT: Severe ground contact or salt water splash, difficult replacement
COMMON AGENTS OF DETERIORATION: Decay fungi and insects with increased potential for biodeterioration
TYPICAL APPLICATIONS: Permanent wood foundations, building poles, horticultural posts, utility poles, decking on or above tidal zone, structural components in piers or docks
Use Category Selection Guide

Wood and wood-based materials used in interior construction not in contact with the ground or foundations. Such products are protected from weather and interior sources of water such as leaking plumbing, condensate, pools and spas.

SERVICE CONDITIONS:
Interior construction, dry, above ground

USE ENVIRONMENT:
Continuously protected from weather or other sources of moisture

COMMON AGENTS OF DETERIORATION:
Insects only

TYPICAL APPLICATIONS:
Interior construction

--

Wood and wood-based materials used for interior construction that are not in contact with ground, but may be subject to dampness. These products are continuously protected from the weather, but may be exposed to occasional sources of moisture.

SERVICE CONDITIONS:
Interior construction, damp above ground

USE ENVIRONMENT:
Protected from weather, but subject to sources of moisture

COMMON AGENTS OF DETERIORATION:
Decay fungi and insects

TYPICAL APPLICATIONS:
Interior construction – beams, timbers, flooring, framing, millwork, sill plate

Wood and wood-based materials used in exterior construction that are coated and not in contact with the ground. Such products may be exposed to the full effects of weather, such as vertical exterior walls or other types of construction that allows water to quickly drain from the surface.

SERVICE CONDITIONS:
Exterior construction, coated, rapid water runoff, above ground

USE ENVIRONMENT:
Coated
Exposed to all weather cycles, but not exposed to prolonged wetting

COMMON AGENTS OF DETERIORATION:
Decay fungi and insects

TYPICAL APPLICATIONS:
Coated millwork, siding and trim

Wood and wood-based materials used in exterior construction and not in contact with the ground. Materials do not require an exterior coating, but may be finished to achieve a desired aesthetic appearance.

SERVICE CONDITIONS:
Exterior construction, above ground, uncoated, poor water runoff

USE ENVIRONMENT:
Exposed to all weather cycles, and prolonged wetting

COMMON AGENTS OF DETERIORATION:
Decay fungi and insects

TYPICAL APPLICATIONS:
Decking, deck joists, sill, walkways, railings and fence pickets

Wood and wood-based materials used in contact with the ground, fresh water, or other situations favorable to deterioration.

SERVICE CONDITIONS:
Ground contact or fresh water, non-critical components

USE ENVIRONMENT:
For normal ground contact or fresh water contact
Exposed to all weather cycles

COMMON AGENTS OF DETERIORATION:
Decay fungi and insects

TYPICAL APPLICATIONS:
fence posts, deck posts, structural lumber & timbers, guardrail posts, utility poles in regions of low decay potential

Wood and wood-based materials used in contact with the ground either in severe environments, such as horticultural sites, in climates with a high potential for deterioration, in critically important components.

SERVICE CONDITIONS:
Ground contact, fresh water, important construction components, or in salt water splash zones

USE ENVIRONMENT:
Severe ground contact or salt water splash, difficult replacement
Exposed to all weather cycles

COMMON AGENTS OF DETERIORATION:
Decay fungi and insects with increased potential for biodeterioration

TYPICAL APPLICATIONS:
Permanent wood foundations, building poles, horticultural posts, utility poles, decking on or above tidal zone, structural components in piers or docks
In regions of high potential for decay
Wood and wood-based materials used in contact with the ground either in severe environments or climates demonstrated to have extremely high potential for deterioration and in critical structural components.

SERVICE CONDITIONS:
- Ground contact, fresh water, critical structural components

USE ENVIRONMENT:
- Very severe ground contact, exposed to all weather cycles
- Extreme decay potential

COMMON AGENTS OF DETERIORATION:
- Decay fungi and insects with increased potential for biodeterioration

TYPICAL APPLICATIONS:
- Land or fresh water piling, foundation piling, utility poles with a severe potential for decay

Wood and wood-based materials exposed to salt and brackish water generally from New Jersey and north on the East Coast and north of San Francisco on the West Coast to the extent that the marine borers can attack them.

SERVICE CONDITIONS:
- Salt or brackish water and adjacent mud zone

USE ENVIRONMENT:
- Continuous marine (salt water) exposure

COMMON AGENTS OF DETERIORATION:
- Salt water organisms: Teredo, Limnoria quadripunctata

TYPICAL APPLICATIONS:
- Piling, bulkhead, bracing

Wood and wood-based materials intended for fire protection and used in exterior construction that is in contact with the ground or with foundations, but may be exposed to full effects of weather such as intermittent rain, dew, sunlight and wind.

SERVICE CONDITIONS:
- Fire protection as required by codes
- Above ground exterior construction.

USE ENVIRONMENT:
- Wetting

COMMON AGENTS OF DETERIORATION:
- Fire

TYPICAL APPLICATIONS:
- Vertical exterior walls, inclined roof surfaces or other types of construction that allow water to quickly drain from surface.
Wood and wood-based materials used in contact with the ground either in severe environments or climates demonstrated to have extremely high potential for deterioration and in critical structural components.

SERVICE CONDITIONS:
- Ground contact, fresh water, critical structural components

USE ENVIRONMENT:
- Very severe ground contact, exposed to all weather cycles
- Extreme decay potential

COMMON AGENTS OF DETERIORATION:
- Decay fungi and insects with increased potential for biodeterioration

TYPICAL APPLICATIONS:
- Land or fresh water piling, foundation piling, utility poles with a severe potential for decay

Wood and wood-based materials exposed to salt and brackish water generally from New Jersey and north on the East Coast and north of San Francisco on the West Coast to the extent that the marine borers can attack them.

SERVICE CONDITIONS:
- Salt or brackish water and adjacent mud zone

USE ENVIRONMENT:
- Continuous marine (salt water) exposure

COMMON AGENTS OF DETERIORATION:
- Salt water organisms: Teredo, Limnoria quadripunctata

TYPICAL APPLICATIONS:
- Piling, bulkhead, bracing

Wood and wood-based materials exposed to salt and brackish water generally between New Jersey and Georgia on the East Coast and south of San Francisco on the West Coast to the extent that the marine borers can attack them.

SERVICE CONDITIONS:
- Salt or brackish water and adjacent mud zone

USE ENVIRONMENT:
- Continuous marine (salt water) exposure

COMMON AGENTS OF DETERIORATION:
- Salt water organisms: Teredo, Martesia, Sphaeroma

TYPICAL APPLICATIONS:
- Piling, bulkhead, bracing

Wood and wood-based materials intended for fire protection and used in interior construction where wood material is not in contact with the ground and is protected from exterior weather.

SERVICE CONDITIONS:
- Fire protection as required by codes
- Above ground interior construction

USE ENVIRONMENT:
- Continuously protected from weather or other sources of moisture

COMMON AGENTS OF DETERIORATION:
- Fire

TYPICAL APPLICATIONS:
- Roof sheathing, roof trusses, studs, joists, paneling

Wood and wood-based materials intended for fire protection and used in exterior construction that is not in contact with the ground or with foundations, but may be exposed to full effects of weather such as intermittent rain, dew, sunlight and wind.

SERVICE CONDITIONS:
- Fire protection as required by codes
- Above ground exterior construction

USE ENVIRONMENT:
- Wetting

COMMON AGENTS OF DETERIORATION:
- Fire

TYPICAL APPLICATIONS:
- Vertical exterior walls, inclined roof surfaces or other types of construction that allow water to quickly drain from surface
Service Conditions for Use Category Selection Guide
(Source: AWPA 2006 Book of Standards)

<table>
<thead>
<tr>
<th>Use Category</th>
<th>Service Conditions</th>
<th>Use Environment</th>
<th>Common Agents of Deterioration</th>
<th>Typical Applications</th>
</tr>
</thead>
<tbody>
<tr>
<td>UC1</td>
<td>Interior construction Above ground Dry</td>
<td>Continuously protected from weather or other sources of moisture</td>
<td>Insects only</td>
<td>Interior construction and furnishings</td>
</tr>
<tr>
<td>UC2</td>
<td>Interior construction Above ground Damp</td>
<td>Protected from weather, but may be subject to sources of moisture</td>
<td>Decay fungi and insects</td>
<td>Interior construction</td>
</tr>
<tr>
<td>UC3A</td>
<td>Exterior construction Above ground Coated & rapid water runoff</td>
<td>Exposed to all weather cycles, not exposed to prolonged wetting</td>
<td>Decay fungi and insects</td>
<td>Coated millwork, siding and trim</td>
</tr>
<tr>
<td>UC3B</td>
<td>Exterior construction Above ground Coated & or poor water runoff</td>
<td>Exposed to all weather cycles, including prolonged wetting</td>
<td>Decay fungi and insects</td>
<td>Decking, deck joists, railings, fence pickets, uncured millwork</td>
</tr>
<tr>
<td>UC4A</td>
<td>Ground contact or fresh water Non-critical components</td>
<td>Exposed to all weather cycles, normal exposure conditions</td>
<td>Decay fungi and insects</td>
<td>Fence, deck, and guardrail posts, cross ties & utility poles (low decay areas)</td>
</tr>
<tr>
<td>UC4B</td>
<td>Ground contact or fresh water Critical components or difficult replacement</td>
<td>Exposed to all weather cycles, high decay potential including salt water splash</td>
<td>Decay fungi and insects with increased potential for biodeterioration</td>
<td>Permanent wood foundations, building poles, horticultural posts, cross ties & utility poles (high decay areas)</td>
</tr>
<tr>
<td>UC4C</td>
<td>Ground contact or fresh water Critical structural components</td>
<td>Exposed to all weather cycles, severe environments, extreme decay potential</td>
<td>Decay fungi and insects with extreme potential for biodeterioration</td>
<td>Land & freshwater piling, foundation piling, cross ties & utility poles (severe decay areas)</td>
</tr>
<tr>
<td>UC5A</td>
<td>Salt or brackish water and adjacent mud zone Northern waters</td>
<td>Continuous marine exposure (salt water)</td>
<td>Salt water organisms</td>
<td>Piling, bulkheads, bracing</td>
</tr>
<tr>
<td>UC5B</td>
<td>Salt or brackish water and adjacent mud zone NJ to GA, south of San Fran</td>
<td>Continuous marine exposure (salt water)</td>
<td>Salt water organisms including creosote tolerant Tremontiella truncata</td>
<td>Piling, bulkheads, bracing</td>
</tr>
<tr>
<td>UC5C</td>
<td>Salt or brackish water and adjacent mud zone South of GA & Gulf Coast</td>
<td>Continuous marine exposure (salt water)</td>
<td>Salt water organisms including creosote tolerant Martiella, Sphaeromella</td>
<td>Piling, bulkheads, bracing</td>
</tr>
<tr>
<td>UCFA</td>
<td>Fire protection as required by codes Above ground Interior construction</td>
<td>Continuously protected from weather or other sources of moisture</td>
<td>Fire</td>
<td>Roof sheathing, roof trusses, stack, joists, framing</td>
</tr>
<tr>
<td>UCFB</td>
<td>Fire protection as required by codes Above ground Exterior construction</td>
<td>Subject to wetting</td>
<td>Fire</td>
<td>Vertical exterior walls, inclined roof surfaces or other construction which allows water to quickly drain</td>
</tr>
</tbody>
</table>

Quality Assurance

To comply with the International Building Codes, pressure-treated wood shall bear the quality mark of an inspection agency that maintains the continuing supervision, testing and inspection over the quality of the treated wood. Inspection agencies for treated wood shall be listed by an accreditation body* that complies with the requirements of the American Lumber Standards Committee (ALSC) Treated Wood Program, or equivalent. The quality mark shall be on a stamp or label affixed to the treated wood, and shall include the following information:

1. Identification of treating manufacturer
2. Type of preservative used
3. Minimum preservative retention (pcf)
4. End use for which the product is treated
5. Identity of the accredited inspection agency
6. Standard to which the product is treated

These quality marks for treated wood may be sometimes confusing because they often include additional product information, proprietary brands, warranties, etc. To help clarify the situation, Western Wood Preservers Institute created the CheckMark Identification Program to easily locate and recognize the various ALSC-accredited agency’s trademarks. Look for the CheckMark on the stamp or end tag to quickly find the ALSC third-party agency’s logo.

The treating industry also manufactures products that do not require ALSC oversight; such products include landscape timbers for non-structural applications and decking products which carry their own manufacturer’s warranty.

Third-party agencies verify that pressure-treated wood was properly treated in accordance with AWPA Standards or NER-ESR Criteria. Third-party inspection is not always mandated by law, but is necessary to comply with the International Building Codes. To be certain of receiving the treated wood that was specified, only accept or approve treated wood with a quality stamp or end tag of an accredited ALSC agency.

* Accreditation Body. An approved, third-party organization that is independent of the grading and inspection agencies, and the lumber mills, and that initially accredits and subsequently monitors, on a continuing basis, the competency and performance of a grading or inspection agency related to carrying out specific tasks.
Service Conditions for Use Category Selection Guide
(Source: AWPA 2006 Book of Standards)

<table>
<thead>
<tr>
<th>Use Category</th>
<th>Service Conditions</th>
<th>Use Environment</th>
<th>Common Agents of Deterioration</th>
<th>Typical Applications</th>
</tr>
</thead>
<tbody>
<tr>
<td>UC1</td>
<td>Interior construction Above ground
Dry</td>
<td>Continuously protected from weather or other sources of moisture</td>
<td>Insects only</td>
<td>Interior construction and furnishings</td>
</tr>
<tr>
<td>UC2</td>
<td>Interior construction Above ground
Damp</td>
<td>Protected from weather, but may be subject to sources of moisture</td>
<td>Decay fungi and insects</td>
<td>Interior construction</td>
</tr>
<tr>
<td>UC3A</td>
<td>Exterior construction Above ground
Coated & salt-resistant
or
Coated & or
DIY
exterior
construction
Runoff</td>
<td>Exposed to all weather cycles, not exposed to prolonged wetting</td>
<td>Decay fungi and insects</td>
<td>Coated millwork, siding and trim</td>
</tr>
<tr>
<td>UC3B</td>
<td>Exterior construction Above ground
Coated & or
DIY
exterior
construction
Runoff</td>
<td>Exposed to all weather cycles, including prolonged wetting</td>
<td>Decay fungi and insects</td>
<td>Decking, deck joints, railings, fence pickets, uncured millwork</td>
</tr>
<tr>
<td>UC4A</td>
<td>Ground contact or
fresh water
Non-structural
components</td>
<td>Exposed to all weather cycles, normal exposure conditions</td>
<td>Decay fungi and insects</td>
<td>Fence, deck, and guardrail posts, cross ties & utility poles (low decay areas)</td>
</tr>
<tr>
<td>UC4B</td>
<td>Ground contact or
fresh water
Critical components or
difficult replacement</td>
<td>Exposed to all weather cycles, high decay potential including salt water splash</td>
<td>Decay fungi and insects with increased potential for biodeterioration</td>
<td>Permanent wood foundations, building poles, horticultural posts, cross ties & utility poles (high decay areas)</td>
</tr>
<tr>
<td>UC4C</td>
<td>Ground contact or
fresh water
Critical structural
components</td>
<td>Exposed to all weather cycles, severe environments, extreme decay potential</td>
<td>Decay fungi and insects with extreme potential for biodeterioration</td>
<td>Land & freshwater piling, foundation piling, cross ties & utility poles (severe decay areas)</td>
</tr>
<tr>
<td>UC5A</td>
<td>Salt or brackish water and
adjacent mud zone
Northern waters</td>
<td>Continuous marine exposure (salt water)</td>
<td>Salt water organisms</td>
<td>Piling, bulkheads, bracing</td>
</tr>
<tr>
<td>UC5B</td>
<td>Salt or brackish water and
adjacent mud zone
GA, south of San Fran</td>
<td>Continuous marine exposure (salt water)</td>
<td>Salt water organisms including creosote tolerant Limnoria tripunctata</td>
<td>Piling, bulkheads, bracing</td>
</tr>
<tr>
<td>UC5C</td>
<td>Salt or brackish water and
adjacent mud zone
South of GA & Gulf Coast</td>
<td>Continuous marine exposure (salt water)</td>
<td>Salt water organisms including creosote tolerant Mangia, Sphaeroma</td>
<td>Piling, bulkheads, bracing</td>
</tr>
<tr>
<td>UC6A</td>
<td>Fire protection as required by codes
Interior construction</td>
<td>Continuously protected from weather or other sources of moisture</td>
<td>Fire</td>
<td>Roof sheathing, roof trusses, stack, joists, paneling</td>
</tr>
<tr>
<td>UC6B</td>
<td>Fire protection as required by codes
Exterior construction</td>
<td>Subject to wetting</td>
<td>Fire</td>
<td>Vertical exterior walls, inclining roof surfaces or other construction which allows water to quickly drain</td>
</tr>
</tbody>
</table>

Quality Assurance

To comply with the International Building Codes, pressure-treated wood shall bear the quality mark of an inspection agency that maintains the continuing supervision, testing and inspection over the quality of the treated wood. Inspection agencies for treated wood shall be listed by an accreditation body* that complies with the requirements of the American Lumber Standards Committee (ALSC) Treated Wood Program, or equivalent. The quality mark shall be on a stamp or label affixed to the treated wood, and shall include the following information:

1. Identification of treating manufacturer
2. Type of preservative used
3. Minimum preservative retention (pcf)
4. End use for which the product is treated
5. Identity of the accredited inspection agency
6. Standard to which the product is treated

These quality marks for treated wood may be sometimes confusing because they often include additional product information, proprietary brands, warranties, etc. To help clarify the situation, Western Wood Preservers Institute created the CheckMark Identification Program to easily locate and recognize the various ALSC-accredited agency's trademarks. Look for the CheckMark on the stamp or end tag to quickly find the ALSC third party agency's logo.

The treating industry also manufactures products that do not require ALSC oversight; such products include landscape timbers for non-structural applications and decking products which carry their own manufacturer’s warranty.

Third-party agencies verify that pressure-treated wood was properly treated in accordance with AWPA Standards or NER-ESR Criteria. Third-party inspection is not always mandated by law, but is necessary to comply with the International Building Codes. To be certain of receiving the treated wood that was specified, only accept or approve treated wood with a quality stamp or end tag of an accredited ALSC agency.

* Accreditation Body. An approved, third-party organization that is independent of the grading and inspection agencies, and the lumber mills, and that initially accredits and subsequently monitors, on a continuing basis, the competency and performance of a grading or inspection agency related to carrying out specific tasks.
The metal products that come in contact with pressure-treated wood must be of types that are code accepted for the particular product, application and exposure. Examples include fasteners (e.g. nails, screws and bolts), and all connecting hardware (e.g. joist hangers, straps, hinges, post anchors and truss plates).

Fasteners and connectors for preservative-treated wood shall be hot-dipped galvanized in accordance with ASTM A-153, silicon bronze, copper or 304 or 316 stainless steel. Stainless steel fasteners should be used below grade in Permanent Wood Foundations and are recommended for use with treated wood in other corrosive exposures such as in or near salt water. Building codes dealing with fasteners and connectors reference preserved wood as one product, regardless of the formulation used for treatment. There are differences among corrosion properties of different treated wood, so clarification of the preservative type used may be needed. Some code evaluation reports may permit the use of other types of fasteners.

Copper-Based Preservatives

Hot-dipped galvanized or stainless steel fasteners and connectors are recommended for use when lumber is treated with a copper-based preservative. Copper-based formulations include CCA, ACZA, ACQ or CA-C and may be used in interior or exterior applications. Hot-dipped galvanized fasteners and connectors are generally acceptable for above-grade applications and should meet ASTM A-153. Hot-dipped galvanized connectors should meet ASTM A-653, Class G185 sheet with 1.85 ounces of zinc coating per square foot minimum. Fasteners and connectors used together must be of the same metallic composition to avoid galvanic corrosion (e.g. use hot-dipped nails with hot-dipped joist hangers).

Type 304 or 316 stainless steel is recommended for maximum corrosion resistance in more severe exterior applications including swimming pools, salt-water exposure and below-grade applications such as Permanent Wood Foundations. Stainless steel is also a recommended option for use with CCA, ACZA, ACQ or CA-C treated wood at retention levels greater than required for Ground Contact.

Borate-Based Preservatives

Borate-treated wood (Inorganic Boron – SBX) is limited to Above Ground interior use in dry or damp applications, continually protected from liquid water. According to information provided by preservative manufacturers and suppliers, borate-treated wood is not corrosive.*

* Fastener guidance on borate treated wood from Arch Wood Protection, Inc. (SillBor®); Viance LLC. (TimberSaver® PT); U.S. Borax and Osmose, Inc. (Advance Guard®) per International Code Council, NER 648.

Standard carbon-steel or aluminum products should never be used in direct contact when lumber is treated with a copper-based preservative. Electroplated galvanized metal products generally have a thinner layer of protection compared to hot-dipped galvanized and are typically not accepted by the building codes for use in exterior applications. When aluminum or electroplated products such as flashing or termite shields are used, spacers or other physical barriers are necessary to prevent direct contact from copper-based treated wood. These barriers should provide complete separation and remain intact for the intended service life of the metal.

Fasteners and connectors coated with proprietary anti-corrosion technologies are also available for use with copper-based preservatives. Consult individual hardware manufacturers for specifics regarding their performance and acceptance by building codes.

Fasteners & Connectors

The metal products that come in contact with pressure-treated wood must be of types that are code accepted for the particular product, application and exposure. Examples include fasteners (e.g. nails, screws and bolts), and all connecting hardware (e.g. joist hangers, straps, hinges, post anchors and truss plates).

Fasteners and connectors for preservative-treated wood shall be hot-dipped galvanized in accordance with ASTM A-153, silicon bronze, copper or 304 or 316 stainless steel. Stainless steel fasteners should be used below grade in Permanent Wood Foundations and are recommended for use with treated wood in other corrosive exposures such as in or near salt water. Building codes dealing with fasteners and connectors reference preserved wood as one product, regardless of the formulation used for treatment. There are differences among corrosion properties of different treated wood, so clarification of the preservative type used may be needed. Some code evaluation reports may permit the use of other types of fasteners.
The metal products that come in contact with pressure-treated wood must be of types that are code accepted for the particular product, application and exposure. Examples include fasteners (e.g. nails, screws and bolts), and all connecting hardware (e.g. joist hangers, straps, hinges, post anchors and truss plates).

Fasteners and connectors for preservative-treated wood shall be hot-dipped galvanized in accordance with ASTM A-153, silicon bronze, copper or 304 or 316 stainless steel. Stainless steel fasteners should be used below grade in Permanent Wood Foundations and are recommended for use with treated wood in other corrosive exposures such as in or near salt water. Building codes dealing with fasteners and connectors reference preserved wood as one product, regardless of the formulation used for treatment. There are differences among corrosion properties of different treated wood, so clarification of the preservative type used may be needed. Some code evaluation reports may permit the use of other types of fasteners.

Copper-Based Preservatives

Hot-dipped galvanized or stainless steel fasteners and connectors are recommended for use when lumber is treated with a copper-based preservative. Copper-based formulations include CCA, ACZA, ACQ or CA-C and may be used in interior or exterior applications.

Hot-dipped galvanized fasteners and connectors are generally acceptable for above-grade applications and should meet ASTM A-153. Hot-dipped galvanized connectors should meet ASTM A-653, Class G185 sheet with 1.85 ounces of zinc coating per square foot minimum. Fasteners and connectors used together must be of the same metallic composition to avoid galvanic corrosion (e.g. use hot-dipped nails with hot-dipped joist hangers).

Type 304 or 316 stainless steel is recommended for maximum corrosion resistance in more severe exterior applications including swimming pools, salt-water exposure and below-grade applications such as Permanent Wood Foundations. Stainless steel is also a recommended option for use with CCA. ACZA, ACQ or CA-C treated wood at retention levels greater than required for Ground Contact.

Borate-Based Preservatives

Borate-treated wood (Inorganic Boron - SBX) is limited to Above Ground interior use in dry or damp applications, continually protected from liquid water. According to information provided by preservative manufacturers and suppliers, borate-treated wood is not corrosive.**

Fastener guidance on borate treated wood from Arch Wood Protection, Inc. (SillBor®); Viance LLC. (TimberSaver® PT); U.S. Borax and Osmose, Inc. (Advance Guard®) per International Code Council, NER 648.

Fasteners and connectors coated with proprietary anti-corrosion technologies are also available for use with copper-based preservatives. Consult individual hardware manufacturers for specifics regarding their performance and acceptance by building codes.
The following requirements and recommendations are according to AWPA Standard M4 as they apply to job site care, handling, and field treatment of pressure-treated wood products.

Fabrication

Whenever practical, all fabrication (boring, ripping, planning, sanding and trimming) shall be specified and accomplished prior to pressure treating.

Job Site Care and Storage

All wood products, including pressure-treated products, will continue to lose or gain moisture until they adjust to the conditions of their end-use environment. Treated lumber should be properly stacked and stored in the same manner as untreated wood. Storage areas shall be free of debris, weeds and dry vegetation and shall have drainage to prevent treated material from being subjected to standing water. Material shall be stored off the ground on solid timbers of size and so arranged as to support treated materials without producing noticeable distortion. Treated lumber having a specified moisture content shall be stored under shelter.

Field Treating Methods

Copper Naphthenate-based solutions may be used for field treatment of materials originally treated with Pentachlorophenol, Creosote or waterborne preservatives as specified in AWPA Standard M4. The preservatives concentration shall contain no less than 2 percent copper metal.

Application of Field Preservatives

Newly exposed surfaces resulting from field fabrication and/or handling abuse shall be field treated by brushing, dipping or soaking. Protective clothing and hand protection shall be worn when applying preservatives. The application should be done in a manner that the preservative does not drip or spill into the surrounding soil.

Best Management Practices for the Use of Treated Wood in Aquatic and Other Sensitive Environments

Best Management Practices

Protecting the lakes, streams, bays, estuaries and wetlands of North America is a responsibility shared by everyone. The pressure-treated wood industry is committed to ensuring that its products are manufactured and installed in a manner which minimizes any potential for adverse impacts to these environments. To achieve this objective, the industry developed and encouraged the use of the Best Management Practices or BMPs. BMPs are in addition to other treating specifications and contain treating process guidelines specific to each preservative system. These include technical guidance on the handling and use of the treating preservative, wood preparation and treating procedures, post-treatment processes and inspection. BMPs are designed to:

- Optimize the minimal retention of preservative placed into the wood while assuring compliance with specifications
- Maximize stabilization in waterborne systems
- Minimize surface residues and bleeding from oil-type, preservative-treated products

The specification for treated wood products used in aquatic and wetland applications should contain language to the effect: These products are to be produced in accordance with the Best Management Practices for Treated Wood in Aquatic and Other Sensitive Environments issued by the Western Wood Preservers Institute, Wood Preservation Canada, and the Timber Piling Council. By using such a reference, the specific requirements of the BMPs are not required.

In summary, the treating industry believes the potential for any adverse environmental impact is reduced when certain conditions are met:

- Materials are specified with the minimum retention needed for their application
- Best Management Practices (BMPs) are mandated with certification of inspection
- Proper field installation guidelines are followed

For detailed coverage of BMPs, refer to the publication Best Management Practices for the Use of Treated Wood in Aquatic and Other Sensitive Environments, ©WWPI 2006 or later edition.

Use and Handling Recommendations and Field Treatments

The following requirements and recommendations are according to AWPA Standard M4 as they apply to job site care, handling, and field treatment of pressure-treated wood products.
Best Management Practices for the Use of Treated Wood in Aquatic and Other Sensitive Environments

Best Management Practices

Protecting the lakes, streams, bays, estuaries and wetlands of North America is a responsibility shared by everyone. The pressure-treated wood industry is committed to ensuring that its products are manufactured and installed in a manner which minimizes any potential for adverse impacts to these environments. To achieve this objective, the industry developed and encouraged the use of the Best Management Practices or BMPs. BMPs are in addition to other treating specifications and contain treating process guidelines specific to each preservative system. These include technical guidance on the handling and use of the treating preservative, wood preparation and treating procedures, post-treatment processes and inspection. BMPs are designed to:

- Optimize the minimal retention of preservative placed into the wood while assuring compliance with specifications
- Maximize stabilization in waterborne systems
- Minimize surface residues and bleeding from oil-type, preservative-treated products

The specification for treated wood products used in aquatic and wetland applications should contain language to the effect: These products are to be produced in accordance with the Best Management Practices for Treated Wood in Aquatic and Other Sensitive Environments issued by the Western Wood Preservers Institute, Wood Preservation Canada, and the Timber Piling Council. By using such a reference, the specific requirements of the BMPs are not required.

In summary, the treating industry believes the potential for any adverse environmental impact is reduced when certain conditions are met:

- Materials are specified with the minimum retention needed for their application
- Best Management Practices (BMPs) are mandated with certification of inspection
- Proper field installation guidelines are followed

For detailed coverage of BMPs, refer to the publication Best Management Practices for the Use of Treated Wood in Aquatic and Other Sensitive Environments, ©WWPI 2006 or later edition.

Use and Handling Recommendations and Field Treatments

The following requirements and recommendations are according to AWPA Standard M4 as they apply to job site care, handling, and field treatment of pressure-treated wood products.

Fabrication

Whenever practical, all fabrication (boring, ripping, planning, sanding and trimming) shall be specified and accomplished prior to pressure treating.

Job Site Care and Storage

All wood products, including pressure-treated products, will continue to lose or gain moisture until they adjust to the conditions of their end-use environment. Treated lumber should be properly stacked and stored in the same manner as untreated wood. Storage areas shall be free of debris, weeds and dry vegetation and shall have drainage to prevent treated material from being subjected to standing water. Material shall be stored off the ground on solid timbers of size and so arranged as to support treated materials without producing noticeable distortion. Treated lumber having a specified moisture content shall be stored under shelter.

Field Treating Methods

Copper Naphthenate-based solutions may be used for field treatment of materials originally treated with Pentachlorophenol, Creosote or waterborne preservatives as specified in AWPA Standard M4. The preservatives concentration shall contain no less than 2 percent copper metal.

Application of Field Preservatives

Newly exposed surfaces resulting from field fabrication and/or handling abuse shall be field treated by brushing, dipping or soaking. Protective clothing and hand protection shall be worn when applying preservatives. The application should be done in a manner that the preservative does not drip or spill into the surrounding soil.
Disposal

The preferred option for handling wood removed from service is to reuse the material in a manner consistent with the use of similar treated wood products. Material originally used for structural applications can often be used for non-structural purposes such as landscaping timbers or parking bumpers.

Treated wood should NEVER be burned in open fires of any kind, stoves, fireplaces or residential boilers.

Treated wood from commercial or industrial uses can generally be disposed of as a non-hazardous material. Individuals may dispose of treated wood by ordinary trash collection. However, all disposals should assure conformance with Federal, state and local regulations. For specific details, contact WWPI for a guide to the Disposal of Treated Wood.

Use Site Precautions

Do not use pressure-treated wood where it will be in frequent or prolonged contact with bare skin or under circumstances where preservative may become a component of food for either humans or animals. Examples include sites using mulch from recycled treated wood, cutting boards, counter tops, animal bedding and structures for storing human or animal food.

Treated wood should not be used where it may come into contact or indirect contact with public drinking water except for uses such as docks and bridges. Wood treated with Pentachlorophenol or Creosote should not be used where it may come into contact with drinking water for domestic animals or livestock. Waterborne preservatives are approved for this use.

Use only treated wood that is visibly clean and free of surface residue for patios, decks and walkways. Wood treated with waterborne preservatives may be exposed in residential interiors, provided clean up is performed after construction.

Material to be placed in or near the water should be treated in accordance with the guide, Best Management Practices for the Use of Treated Wood in Aquatic and Other Sensitive Environments, available from WWPI.

All scraps, sawdust and construction debris should be collected and removed for appropriate disposal.

Handling Precautions

Users should follow the instructions provided in an EPA-approved Consumer Information Sheet (CIS) or Consumer Safety Information Sheet (CSIS) or other Safe Handling Information provided by the supplier of the treated wood material. Make certain job-site employees are aware of the information in the CIS or CSIS and follow the guidelines.

When handling treated wood, wear protective clothing such as long-sleeved shirts and long pants and use gloves. After working with the treated material, wash any exposed area before eating, drinking, going to the toilet, or using tobacco products.

When sawing and machining the treated material, wear goggles to protect eyes from flying particles. Wear a dust mask and, if possible, work outdoors to avoid inhalation of sawdust.

If material or sawdust accumulates on clothing, wash thoroughly and separately from other household clothing before reuse.

These basic safety and hygiene habits are also applicable to untreated wood.
Disposal

The preferred option for handling wood removed from service is to reuse the material in a manner consistent with the use of similar treated wood products. Material originally used for structural applications can often be used for non-structural purposes such as landscaping timbers or parking bumpers.

Treated wood should NEVER be burned in open fires of any kind, stoves, fireplaces or residential boilers.

Treated wood from commercial or industrial uses can generally be disposed of as a non-hazardous material. Individuals may dispose of treated wood by ordinary trash collection. However, all disposals should assure conformance with Federal, state and local regulations. For specific details, contact WWPI for a guide to the Disposal of Treated Wood.

Use Site Precautions

Do not use pressure-treated wood where it will be in frequent or prolonged contact with bare skin or under circumstances where preservative may become a component of food for either humans or animals. Examples include sites using mulch from recycled treated wood, cutting boards, counter tops, animal bedding and structures for storing human or animal food.

Treated wood should not be used where it may come into contact or indirect contact with public drinking water except for uses such as docks and bridges. Wood treated with Pentachlorophenol or Creosote should not be used where it may come into contact with drinking water for domestic animals or livestock. Waterborne preservatives are approved for this use.

Use only treated wood that is visibly clean and free of surface residue for patios, decks and walkways. Wood treated with waterborne preservatives may be exposed in residential interiors, provided clean up is performed after construction.

Material to be placed in or near the water should be treated in accordance with the guide, Best Management Practices for the Use of Treated Wood in Aquatic and Other Sensitive Environments, available from WWPI.

All scraps, sawdust and construction debris should be collected and removed for appropriate disposal.

Handling Precautions

Users should follow the instructions provided in an EPA-approved Consumer Information Sheet (CIS) or Consumer Safety Information Sheet (CSIS) or other Safe Handling Information provided by the supplier of the treated wood material. Make certain job-site employees are aware of the information in the CIS or CSIS and follow the guidelines.

When handling treated wood, wear protective clothing such as long-sleeved shirts and long pants and use gloves. After working with the treated material, wash any exposed area before eating, drinking, going to the toilet, or using tobacco products.

When sawing and machining the treated material, wear goggles to protect eyes from flying particles. Wear a dust mask and, if possible, work outdoors to avoid inhalation of sawdust.

If material or sawdust accumulates on clothing, wash thoroughly and separately from other household clothing before reuse.

These basic safety and hygiene habits are also applicable to untreated wood.
Specification Guide to Treated Wood End Uses

AGRICULTURE, FARM USE

<table>
<thead>
<tr>
<th>USE</th>
<th>AWPA STANDARD</th>
<th>Copper Napthenate1</th>
<th>Creosote2</th>
<th>Pentachlorophenol2</th>
<th>ACQ3</th>
<th>ACZA4</th>
<th>C&AC5</th>
<th>CCA6</th>
<th>SBR7</th>
<th>B28</th>
<th>PTV9</th>
</tr>
</thead>
<tbody>
<tr>
<td>Round poles and posts as structural members</td>
<td>4B</td>
<td>0.075</td>
<td>7.5 – 16.0</td>
<td>0.38 – 0.60</td>
<td>0.60</td>
<td>0.60</td>
<td>0.31</td>
<td>0.60</td>
<td>NL</td>
<td>NL</td>
<td>NL</td>
</tr>
<tr>
<td>Sawn poles and posts as structural members</td>
<td>4B</td>
<td>0.075</td>
<td>12.0</td>
<td>0.60</td>
<td>0.60</td>
<td>0.60</td>
<td>0.31</td>
<td>0.60</td>
<td>NL</td>
<td>NL</td>
<td>NL</td>
</tr>
<tr>
<td>Posts, fence</td>
<td>4A</td>
<td>0.055</td>
<td>8.0</td>
<td>0.40</td>
<td>0.40</td>
<td>0.40</td>
<td>0.15</td>
<td>0.40</td>
<td>NL</td>
<td>NL</td>
<td>NL</td>
</tr>
<tr>
<td>Grape stakes, sawn</td>
<td>4A</td>
<td>0.060</td>
<td>10.0</td>
<td>0.50</td>
<td>0.40</td>
<td>0.40</td>
<td>0.15</td>
<td>0.40</td>
<td>NL</td>
<td>NL</td>
<td>NL</td>
</tr>
<tr>
<td>Grape stakes, sawn</td>
<td>4A</td>
<td>0.060</td>
<td>10.0</td>
<td>0.30</td>
<td>0.40</td>
<td>0.40</td>
<td>0.15</td>
<td>0.40</td>
<td>NL</td>
<td>NL</td>
<td>NL</td>
</tr>
</tbody>
</table>

BEAMS & TIMBERS, glue laminated before or after treatment

<table>
<thead>
<tr>
<th>Use Category System</th>
<th>Use Category System</th>
<th>Copper Napthenate1</th>
<th>Creosote2</th>
<th>Pentachlorophenol2</th>
<th>ACQ3</th>
<th>ACZA4</th>
<th>C&AC5</th>
<th>CCA6</th>
<th>SBR7</th>
<th>B28</th>
<th>PTV9</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>0.04</td>
<td>8.0</td>
<td>0.30</td>
<td>0.55</td>
<td>0.25 – 0.30</td>
<td>NL</td>
<td>0.25</td>
<td>NL</td>
<td>0.019</td>
<td>0.013</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>0.04</td>
<td>8.0</td>
<td>0.30</td>
<td>0.55</td>
<td>0.25 – 0.30</td>
<td>NL</td>
<td>0.25</td>
<td>NL</td>
<td>0.019</td>
<td>0.013</td>
</tr>
<tr>
<td>3B</td>
<td>3B</td>
<td>0.04</td>
<td>8.0</td>
<td>0.30</td>
<td>0.55</td>
<td>0.25 – 0.30</td>
<td>NL</td>
<td>0.25</td>
<td>NL</td>
<td>0.019</td>
<td>0.010</td>
</tr>
<tr>
<td>4A</td>
<td>4A</td>
<td>0.60</td>
<td>10.0</td>
<td>0.60</td>
<td>0.40</td>
<td>0.40 – 0.60</td>
<td>NL</td>
<td>0.40</td>
<td>NL</td>
<td>NL</td>
<td>NL</td>
</tr>
</tbody>
</table>

BUILDING, CONSTRUCTION MATERIAL

<table>
<thead>
<tr>
<th>Use</th>
<th>Copper Napthenate1</th>
<th>Creosote2</th>
<th>Pentachlorophenol2</th>
<th>ACQ3</th>
<th>ACZA4</th>
<th>C&AC5</th>
<th>CCA6</th>
<th>SBR7</th>
<th>B28</th>
<th>PTV9</th>
</tr>
</thead>
<tbody>
<tr>
<td>Decking, Residential</td>
<td>3B</td>
<td>NL</td>
<td>NR</td>
<td>NR</td>
<td>0.15</td>
<td>0.25</td>
<td>0.06</td>
<td>NP</td>
<td>NL</td>
<td>0.019</td>
</tr>
<tr>
<td>Joists, above ground</td>
<td>3B</td>
<td>NL</td>
<td>NR</td>
<td>NR</td>
<td>0.15</td>
<td>0.25</td>
<td>0.06</td>
<td>NP</td>
<td>NL</td>
<td>0.019</td>
</tr>
<tr>
<td>Joists, ground contact</td>
<td>4A</td>
<td>NL</td>
<td>NR</td>
<td>NR</td>
<td>0.40</td>
<td>0.40</td>
<td>0.15</td>
<td>NP</td>
<td>NL</td>
<td>NL</td>
</tr>
<tr>
<td>Posts</td>
<td>4A</td>
<td>NL</td>
<td>NR</td>
<td>NR</td>
<td>0.40</td>
<td>0.40</td>
<td>0.15</td>
<td>NP</td>
<td>NL</td>
<td>NL</td>
</tr>
<tr>
<td>Railing</td>
<td>3B</td>
<td>NL</td>
<td>NR</td>
<td>NR</td>
<td>0.15</td>
<td>0.25</td>
<td>0.06</td>
<td>NP</td>
<td>NL</td>
<td>0.019</td>
</tr>
<tr>
<td>Floor plate</td>
<td>2</td>
<td>NL</td>
<td>NR</td>
<td>NR</td>
<td>0.15</td>
<td>0.25</td>
<td>0.06</td>
<td>NP</td>
<td>NL</td>
<td>0.019</td>
</tr>
<tr>
<td>Flooring, above ground, interior</td>
<td>1, 2</td>
<td>NL</td>
<td>NR</td>
<td>NR</td>
<td>0.15</td>
<td>0.25</td>
<td>0.06</td>
<td>NP</td>
<td>0.25</td>
<td>0.019</td>
</tr>
<tr>
<td>Framing, interior</td>
<td>1, 2</td>
<td>NL</td>
<td>NR</td>
<td>NR</td>
<td>0.15</td>
<td>0.25</td>
<td>0.06</td>
<td>NP</td>
<td>0.25</td>
<td>0.019</td>
</tr>
</tbody>
</table>

Permanent Wood Foundation

<table>
<thead>
<tr>
<th>Use</th>
<th>Copper Napthenate1</th>
<th>Creosote2</th>
<th>Pentachlorophenol2</th>
<th>ACQ3</th>
<th>ACZA4</th>
<th>C&AC5</th>
<th>CCA6</th>
<th>SBR7</th>
<th>B28</th>
<th>PTV9</th>
</tr>
</thead>
<tbody>
<tr>
<td>Timber</td>
<td>4B</td>
<td>NL</td>
<td>NL</td>
<td>NL</td>
<td>0.60</td>
<td>0.60</td>
<td>0.31</td>
<td>0.60</td>
<td>NL</td>
<td>NL</td>
</tr>
<tr>
<td>Plywood</td>
<td>4B</td>
<td>NL</td>
<td>NL</td>
<td>NL</td>
<td>0.60</td>
<td>0.60</td>
<td>0.31</td>
<td>0.60</td>
<td>NL</td>
<td>NL</td>
</tr>
<tr>
<td>Sub-floor, dam, above ground</td>
<td>2</td>
<td>NL</td>
<td>8.0</td>
<td>0.40</td>
<td>0.15</td>
<td>0.25</td>
<td>0.06</td>
<td>0.25</td>
<td>0.25</td>
<td>0.019</td>
</tr>
<tr>
<td>Exterior, above ground</td>
<td>3B</td>
<td>NL</td>
<td>8.0</td>
<td>0.40</td>
<td>0.15</td>
<td>0.25</td>
<td>0.06</td>
<td>0.25</td>
<td>0.25</td>
<td>0.019</td>
</tr>
<tr>
<td>Ground contact</td>
<td>4A</td>
<td>NL</td>
<td>8.0</td>
<td>0.40</td>
<td>0.40</td>
<td>0.40</td>
<td>0.15</td>
<td>0.40</td>
<td>NL</td>
<td>NL</td>
</tr>
<tr>
<td>Out of contact with ground and continuously protected from liquid water</td>
<td>2</td>
<td>NL</td>
<td>NL</td>
<td>NL</td>
<td>0.15</td>
<td>NL</td>
<td>NL</td>
<td>0.25</td>
<td>0.019</td>
<td>0.013</td>
</tr>
</tbody>
</table>

Footnotes

1 Copper Napthenate
2 Creosote-Coal Tar Creosote
3 Pentachlorophenol may be dissolved with several solvents. The solvents specified in AWPA P-9 are Type A – Oil; Type C – Light Hydrocarbon solvent with auxiliary solvent under Type C when conditions require cleanliness and ability for staining.
4 Alkaline Copper Quaternary
5 Ammoniacal Copper Zinc Arsenate
6 Copper Azole
7 Chromium Copper Amanate
8 Imagine: Brown (82%, Ca(OH)2) (Disodium Octaborate Tetrahydrate):
 - Retention of 0.025 pt OBT is equivalent to 0.017 pt Ca(OH)2 for Non-Pacific Termite exposure
 - Retention of 0.042 pt OBT is equivalent to 0.028 pt Ca(OH)2 for Pacific Termite exposure
9 Douglas Fir only
10 Western red Cedar, Southern Pine only
11 Douglas Fir, Western Hemlock, Southern Pine only
12 Lodgepole Pine, Southern Pine only
13 After gluing
14 Before gluing
15 DC80 from chemically stabilized
16 Propiconazole, Tebuconazole, Imidacloprid
17 For certain species, use of an accepted stain repellent additive above 0.018 pt per lb
Beams & Timbers, glue laminated before or after treatment

<table>
<thead>
<tr>
<th>Use</th>
<th>AWFA Standard</th>
<th>Copper Naphthenate</th>
<th>Creosote</th>
<th>Pentachlorophenol</th>
<th>ACQ</th>
<th>ACZA</th>
<th>CCA</th>
<th>Cc4</th>
<th>CCA</th>
<th>SRX</th>
<th>ER1 92</th>
<th>PT1 96</th>
</tr>
</thead>
<tbody>
<tr>
<td>AGRICULTURE, FARM USE</td>
<td></td>
</tr>
<tr>
<td>Round poles and posts</td>
<td>4B</td>
<td>0.075</td>
<td>7.5 – 16.0</td>
<td>0.38 – 0.60</td>
<td>0.60</td>
<td>0.60</td>
<td>0.31</td>
<td>0.60</td>
<td>NL</td>
<td>NL</td>
<td>NL</td>
<td></td>
</tr>
<tr>
<td>Sawn and posts as structural members</td>
<td>4B</td>
<td>0.075</td>
<td>12.0</td>
<td>0.60</td>
<td>0.60</td>
<td>0.60</td>
<td>0.31</td>
<td>0.60</td>
<td>NL</td>
<td>NL</td>
<td>NL</td>
<td></td>
</tr>
<tr>
<td>Posts, fence</td>
<td></td>
</tr>
<tr>
<td>▪ Round, half and quarter round</td>
<td>4A</td>
<td>0.055</td>
<td>8.0</td>
<td>0.40</td>
<td>0.40</td>
<td>0.40</td>
<td>0.15</td>
<td>0.40</td>
<td>NL</td>
<td>NL</td>
<td>NL</td>
<td></td>
</tr>
<tr>
<td>▪ Sawn four sides</td>
<td>4A</td>
<td>0.040</td>
<td>10.0</td>
<td>0.50</td>
<td>0.40</td>
<td>0.40</td>
<td>0.15</td>
<td>0.50</td>
<td>NP</td>
<td>NL</td>
<td>NL</td>
<td></td>
</tr>
<tr>
<td>Grape stakes, sawn</td>
<td>4A</td>
<td>0.060</td>
<td>10.0</td>
<td>0.30</td>
<td>0.40</td>
<td>0.40</td>
<td>0.15</td>
<td>0.30</td>
<td>NP</td>
<td>NL</td>
<td>NL</td>
<td></td>
</tr>
<tr>
<td>ExTERIOR, GROUND CONTACT</td>
<td></td>
</tr>
<tr>
<td>Interior, dry</td>
<td>1</td>
<td>0.04</td>
<td>8.0</td>
<td>0.30</td>
<td>0.15</td>
<td>0.15</td>
<td>0.25</td>
<td>0.30</td>
<td>NL</td>
<td>0.25</td>
<td>NL</td>
<td>0.019</td>
</tr>
<tr>
<td>Interior, damp</td>
<td>2</td>
<td>0.04</td>
<td>8.0</td>
<td>0.30</td>
<td>0.15</td>
<td>0.15</td>
<td>0.25</td>
<td>0.30</td>
<td>NL</td>
<td>0.25</td>
<td>NL</td>
<td>0.019</td>
</tr>
<tr>
<td>Exterior, above ground</td>
<td>3B</td>
<td>0.04</td>
<td>8.0</td>
<td>0.30</td>
<td>0.15</td>
<td>0.15</td>
<td>0.25</td>
<td>0.30</td>
<td>NL</td>
<td>0.25</td>
<td>NL</td>
<td>0.019</td>
</tr>
<tr>
<td>Exterior, ground contact</td>
<td>4A</td>
<td>0.60</td>
<td>10.0</td>
<td>0.60</td>
<td>0.40</td>
<td>0.40</td>
<td>0.40</td>
<td>0.60</td>
<td>NL</td>
<td>0.40</td>
<td>NL</td>
<td>0.40</td>
</tr>
<tr>
<td>Highway construction</td>
<td>4B, 4C</td>
<td>0.080 – 0.1510</td>
<td>9.0 – 12.0</td>
<td>0.45 – 0.60</td>
<td>NL</td>
<td>0.40</td>
<td>0.40</td>
<td>0.60</td>
<td>NL</td>
<td>0.40</td>
<td>NL</td>
<td>0.40</td>
</tr>
<tr>
<td>BUILDING, CONSTRUCTION MATERIAL</td>
<td></td>
</tr>
<tr>
<td>Decks, Residential</td>
<td></td>
</tr>
<tr>
<td>▪ Decking</td>
<td>3B</td>
<td>NL</td>
<td>NR</td>
<td>NR</td>
<td>0.15</td>
<td>0.25</td>
<td>0.06</td>
<td>NP</td>
<td>NL</td>
<td>0.019</td>
<td>0.018</td>
<td></td>
</tr>
<tr>
<td>▪ Joists, above ground</td>
<td>3B</td>
<td>NL</td>
<td>NR</td>
<td>NR</td>
<td>0.15</td>
<td>0.25</td>
<td>0.06</td>
<td>NP</td>
<td>NL</td>
<td>0.019</td>
<td>0.018</td>
<td></td>
</tr>
<tr>
<td>▪ Joists, ground contact</td>
<td>4A</td>
<td>NL</td>
<td>NR</td>
<td>NR</td>
<td>0.40</td>
<td>0.40</td>
<td>0.15</td>
<td>NP</td>
<td>NL</td>
<td>NL</td>
<td></td>
<td></td>
</tr>
<tr>
<td>▪ Posts</td>
<td>4A</td>
<td>NL</td>
<td>NR</td>
<td>NR</td>
<td>0.40</td>
<td>0.40</td>
<td>0.15</td>
<td>NP</td>
<td>NL</td>
<td>NL</td>
<td></td>
<td></td>
</tr>
<tr>
<td>▪ Railing</td>
<td>3B</td>
<td>NL</td>
<td>NR</td>
<td>NR</td>
<td>0.15</td>
<td>0.25</td>
<td>0.06</td>
<td>NP</td>
<td>NL</td>
<td>0.019</td>
<td>0.013</td>
<td></td>
</tr>
<tr>
<td>Floor plate</td>
<td>2</td>
<td>NL</td>
<td>NR</td>
<td>NR</td>
<td>0.15</td>
<td>0.25</td>
<td>0.06</td>
<td>NP</td>
<td>NL</td>
<td>0.019</td>
<td>0.013</td>
<td></td>
</tr>
<tr>
<td>Framing, interior</td>
<td>1, 2</td>
<td>NL</td>
<td>NR</td>
<td>NR</td>
<td>0.15</td>
<td>0.25</td>
<td>0.06</td>
<td>NP</td>
<td>NL</td>
<td>0.019</td>
<td>0.013</td>
<td></td>
</tr>
<tr>
<td>Lumber</td>
<td></td>
</tr>
<tr>
<td>▪ Above ground</td>
<td>3B</td>
<td>0.04</td>
<td>8.0</td>
<td>0.40</td>
<td>0.15</td>
<td>0.25</td>
<td>0.06</td>
<td>NP</td>
<td>NL</td>
<td>0.019</td>
<td>0.013</td>
<td></td>
</tr>
<tr>
<td>▪ Ground contact</td>
<td>4A</td>
<td>0.04</td>
<td>10.0</td>
<td>0.50</td>
<td>0.40</td>
<td>0.40</td>
<td>0.15</td>
<td>NP</td>
<td>NL</td>
<td>NL</td>
<td></td>
<td></td>
</tr>
<tr>
<td>▪ Out of contact with ground</td>
<td>2</td>
<td>NL</td>
<td>NL</td>
<td>NL</td>
<td>0.55</td>
<td>NL</td>
<td>0.25</td>
<td>0.019</td>
<td>0.013</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>▪ Protecting from liquid water</td>
<td></td>
</tr>
<tr>
<td>Permanent Wood Foundation</td>
<td></td>
</tr>
<tr>
<td>▪ Timber</td>
<td>4B</td>
<td>NL</td>
<td>NL</td>
<td>NL</td>
<td>0.60</td>
<td>0.60</td>
<td>0.31</td>
<td>0.60</td>
<td>NL</td>
<td>NL</td>
<td></td>
<td></td>
</tr>
<tr>
<td>▪ Plywood</td>
<td>4B</td>
<td>NL</td>
<td>NL</td>
<td>NL</td>
<td>0.60</td>
<td>0.60</td>
<td>0.31</td>
<td>0.60</td>
<td>NL</td>
<td>NL</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Plywood Foundation</td>
<td></td>
</tr>
<tr>
<td>▪ Sub-floor, above ground</td>
<td>2</td>
<td>NL</td>
<td>8.0</td>
<td>0.40</td>
<td>0.15</td>
<td>0.25</td>
<td>0.06</td>
<td>0.25</td>
<td>0.25</td>
<td>0.19</td>
<td>0.013</td>
<td></td>
</tr>
<tr>
<td>▪ Exterior, above ground</td>
<td>3B</td>
<td>NL</td>
<td>8.0</td>
<td>0.40</td>
<td>0.15</td>
<td>0.25</td>
<td>0.06</td>
<td>0.25</td>
<td>0.25</td>
<td>0.19</td>
<td>0.013</td>
<td></td>
</tr>
<tr>
<td>▪ Ground contact</td>
<td>4A</td>
<td>NL</td>
<td>8.0</td>
<td>0.40</td>
<td>0.15</td>
<td>0.25</td>
<td>0.06</td>
<td>0.25</td>
<td>0.25</td>
<td>0.19</td>
<td>0.013</td>
<td></td>
</tr>
<tr>
<td>▪ Out of contact with ground</td>
<td>2</td>
<td>NL</td>
<td>NL</td>
<td>NL</td>
<td>0.15</td>
<td>NL</td>
<td>0.25</td>
<td>0.019</td>
<td>0.013</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>▪ Protecting from liquid water</td>
<td></td>
</tr>
<tr>
<td>Poles, Building</td>
<td></td>
</tr>
<tr>
<td>▪ Round</td>
<td>4A, 4B</td>
<td>NL</td>
<td>7.5 – 16.0</td>
<td>0.38 – 0.60</td>
<td>0.60</td>
<td>0.60</td>
<td>0.31</td>
<td>0.60</td>
<td>NL</td>
<td>NL</td>
<td>NL</td>
<td></td>
</tr>
<tr>
<td>▪ Sawn</td>
<td>3B</td>
<td>0.075</td>
<td>12.0</td>
<td>0.60</td>
<td>0.60</td>
<td>0.60</td>
<td>0.31</td>
<td>0.60</td>
<td>NL</td>
<td>NL</td>
<td>NL</td>
<td></td>
</tr>
<tr>
<td>Studs</td>
<td>2</td>
<td>NL</td>
<td>NR</td>
<td></td>
<td>0.15</td>
<td>0.25</td>
<td>0.06</td>
<td>NP</td>
<td>0.25</td>
<td>0.019</td>
<td>0.013</td>
<td></td>
</tr>
</tbody>
</table>

Footnotes:

1. Copper Naphthenate
2. Creosote-Coal Tar Creosote
3. Pentachlorophenol may be dissolved with several solvents. The solvents specified in AWFA Standard are Type A – Creo; Type C – Light Hydrocarbon solvent with auxiliary solvent. Use Type C when scheme conditions require cleanliness and ability for staining.
4. Alkaline Copper Quaternary
5. Ammoniacal Copper Zinc Arsenate
6. Copper Azole
7. Chromated Copper Azekane
8. Imagene Brown (MnO, B2O3)
9. Dioxime Dichloro Tetrathionate:
 - Retention of 0.25 pcf DICT is equivalent to 0.17 pcf B2O3 for Non-Poroterm Terminate exposure
 - Retention of 0.42 pcf DICT is equivalent to 0.28 pcf B2O3 for Poroterm Terminate exposure
10. Douglas Fir only
11. Western Red Cedar, Southern Pine only
12. Douglas Fir, Western Hemlock, Southern Pine only
13. Lodgepole Pine, Southern Pine only
14. After gluing
15. Before gluing
16. DCDC/Imidacloprid/Stabilizer
17. Propiconazole/Bifenthrin/Imidacloprid
18. For certain species, use of an accepted wood repellent additive above 0.013 pcf
19. 0.31 pcf for Western Hemlock
20. 0.31 pcf for Lodgepole Pine
Marine Lumber and Timbers

<table>
<thead>
<tr>
<th>STRUCTURAL LUMBER AND TIMBERS</th>
<th>Use Category System</th>
<th>Copper Naphthenate¹</th>
<th>Creosote²</th>
<th>Pentachlorophenol²</th>
<th>ACQ³</th>
<th>ACZA³</th>
<th>CA-C⁴</th>
<th>CCA⁵</th>
<th>SBR²</th>
<th>EL³⁶</th>
<th>PFI³⁶</th>
</tr>
</thead>
<tbody>
<tr>
<td>In saltwater use and subject to marine borer attack</td>
<td>5A, 5B, 5C</td>
<td>NL</td>
<td>25.0</td>
<td>NL</td>
<td>2.50</td>
<td>2.50</td>
<td>NL</td>
<td>NL</td>
<td>NL</td>
<td>NL</td>
<td>NL</td>
</tr>
<tr>
<td>Piles, foundation, land and fresh water use</td>
<td>4C</td>
<td>0.10 – 0.14</td>
<td>12.0 – 17.0</td>
<td>0.60 – 0.85</td>
<td>NL</td>
<td>0.80 – 1.0</td>
<td>NL</td>
<td>0.80 – 1.0</td>
<td>NL</td>
<td>NL</td>
<td>NL</td>
</tr>
<tr>
<td>In saltwater use and subject to marine borer attack</td>
<td>5A, 5B, 5C</td>
<td>NL</td>
<td>16.0 – 20.0</td>
<td>NL</td>
<td>1.50 – 2.50</td>
<td>1.50 – 2.50</td>
<td>NL</td>
<td>NL</td>
<td>NL</td>
<td>NL</td>
<td>NL</td>
</tr>
<tr>
<td>Piles, Round, half-round, quarter-round</td>
<td>4A</td>
<td>0.95</td>
<td>6.0 – 8.0</td>
<td>0.40</td>
<td>0.40</td>
<td>0.40</td>
<td>0.15</td>
<td>0.40</td>
<td>NL</td>
<td>NL</td>
<td>NL</td>
</tr>
<tr>
<td>Posts, Round, half-round, quarter-round (General const. – fence posts, sign posts, handrails)</td>
<td>4B</td>
<td>0.06</td>
<td>10.0</td>
<td>0.50</td>
<td>0.50</td>
<td>0.50</td>
<td>0.31</td>
<td>0.50</td>
<td>NL</td>
<td>NL</td>
<td>NL</td>
</tr>
<tr>
<td>Piles, Sawn (Guardrails, spacer blocks, critical structural members)</td>
<td>4A</td>
<td>0.06</td>
<td>10.0</td>
<td>0.40</td>
<td>0.40</td>
<td>0.40</td>
<td>0.15</td>
<td>0.40</td>
<td>NL</td>
<td>NL</td>
<td>NL</td>
</tr>
<tr>
<td>Posts, Sawn (Guardrails, spacer blocks, critical structural members)</td>
<td>4B</td>
<td>0.075</td>
<td>10.0</td>
<td>0.50</td>
<td>0.50</td>
<td>0.50</td>
<td>0.31</td>
<td>0.50</td>
<td>NL</td>
<td>NL</td>
<td>NL</td>
</tr>
</tbody>
</table>

Lumber and Timbers for Bridges, Structural Members, Decking, Crubling and Cleats

<table>
<thead>
<tr>
<th>STRUCTURAL LUMBER AND TIMBERS</th>
<th>Use Category System</th>
<th>Copper Naphthenate¹</th>
<th>Creosote²</th>
<th>Pentachlorophenol²</th>
<th>ACQ³</th>
<th>ACZA³</th>
<th>CA-C⁴</th>
<th>CCA⁵</th>
<th>SBR²</th>
<th>EL³⁶</th>
<th>PFI³⁶</th>
</tr>
</thead>
<tbody>
<tr>
<td>Above ground</td>
<td>3B</td>
<td>0.04</td>
<td>8.0</td>
<td>0.40</td>
<td>0.15</td>
<td>0.25</td>
<td>0.06</td>
<td>NP</td>
<td>NL</td>
<td>0.019</td>
<td>0.018¹⁷</td>
</tr>
<tr>
<td>Ground contact and freshwater use</td>
<td>4A</td>
<td>0.06</td>
<td>10.0</td>
<td>0.50</td>
<td>0.40</td>
<td>0.40</td>
<td>0.15</td>
<td>0.50</td>
<td>NP</td>
<td>NL</td>
<td>NL</td>
</tr>
</tbody>
</table>

Marine Lumber and Timbers

<table>
<thead>
<tr>
<th>STRUCTURAL LUMBER AND TIMBERS</th>
<th>Use Category System</th>
<th>Copper Naphthenate¹</th>
<th>Creosote²</th>
<th>Pentachlorophenol²</th>
<th>ACQ³</th>
<th>ACZA³</th>
<th>CA-C⁴</th>
<th>CCA⁵</th>
<th>SBR²</th>
<th>EL³⁶</th>
<th>PFI³⁶</th>
</tr>
</thead>
<tbody>
<tr>
<td>Above ground</td>
<td>4B</td>
<td>0.95</td>
<td>10.0</td>
<td>0.50</td>
<td>0.60</td>
<td>0.60</td>
<td>0.31²⁴</td>
<td>0.60</td>
<td>NL</td>
<td>NL</td>
<td>NL</td>
</tr>
</tbody>
</table>

Footnotes:

1. Copper Naphthenate
2. Creosote-Coal Tar Creosote
3. Pentachlorophenol may be dissolved with several solvents. The solvents specified in AWPA P-9 are:
 - Type A – Creosote-Coal Tar Creosote
 - Type B – Copper Azole
 - Type C – Copper Naphthenate
4. Acetone
5. Pentachlorophenol
6. Alkaline Copper Quaternary
7. Commercially Copper Zinc Arsenate
8. Copper Azole
9. Chromated Copper Arsenate
10. Inorganic Boron (SBX), B₁₀O₃₃·H₂O (Disodium Octaborate Tetrahydrate):
 - Retention of 0.25 pcf DOT is equivalent to 0.17 pcf B₂O₃ for Non-Formosan Termite exposure
 - Retention of 0.42 pcf DOT is equivalent to 0.28 pcf B₂O₃ for Formosan Termite exposure
11. Douglas Fir only
12. Western Red Cedar, Southern Pine only
13. Douglas Fir, Western Hemlock, Southern Pine only
14. Lodgepole Pine, Southern Pine only
15. After gluing
16. Before gluing
17. For certain species, use of an accepted water repellent additive above 0.013 pcf
18. Water repellent additive allows 0.013 pcf B₂O₃ for Douglas Fir, Western Hemlock, Southern Pine and Lodgepole Pine.

Piles

<table>
<thead>
<tr>
<th>STRUCTURAL LUMBER AND TIMBERS</th>
<th>Use Category System</th>
<th>Copper Naphthenate¹</th>
<th>Creosote²</th>
<th>Pentachlorophenol²</th>
<th>ACQ³</th>
<th>ACZA³</th>
<th>CA-C⁴</th>
<th>CCA⁵</th>
<th>SBR²</th>
<th>EL³⁶</th>
<th>PFI³⁶</th>
</tr>
</thead>
<tbody>
<tr>
<td>Foundation, land and freshwater use (round)</td>
<td>4C</td>
<td>0.10 – 0.14</td>
<td>12.0 – 17.0</td>
<td>0.65 – 0.85</td>
<td>0.80</td>
<td>0.80 – 1.0</td>
<td>NL</td>
<td>0.80 – 1.0</td>
<td>NL</td>
<td>NL</td>
<td>NL</td>
</tr>
<tr>
<td>Marine (round) in salt or brackish and subject to marine borer attack</td>
<td>5A, 5B, 5C</td>
<td>NL</td>
<td>16.0 – 20.0</td>
<td>NL</td>
<td>1.50 – 2.50</td>
<td>1.50 – 2.50</td>
<td>NL</td>
<td>NL</td>
<td>NL</td>
<td>NL</td>
<td>NL</td>
</tr>
<tr>
<td>Marine, dual treatment (round) for maximum protection</td>
<td>5B, 5C</td>
<td>NL</td>
<td>20.0</td>
<td>NL</td>
<td>1.0</td>
<td>1.0</td>
<td>NL</td>
<td>1.0</td>
<td>NL</td>
<td>NL</td>
<td>NL</td>
</tr>
<tr>
<td>Sawn timber piles</td>
<td>4B, 4C</td>
<td>0.95</td>
<td>10.0 – 12.0</td>
<td>0.50</td>
<td>0.60</td>
<td>0.60 – 0.80</td>
<td>0.60</td>
<td>0.60 – 0.80</td>
<td>NL</td>
<td>NL</td>
<td>NL</td>
</tr>
</tbody>
</table>

Plywood

<table>
<thead>
<tr>
<th>STRUCTURAL LUMBER AND TIMBERS</th>
<th>Use Category System</th>
<th>Copper Naphthenate¹</th>
<th>Creosote²</th>
<th>Pentachlorophenol²</th>
<th>ACQ³</th>
<th>ACZA³</th>
<th>CA-C⁴</th>
<th>CCA⁵</th>
<th>SBR²</th>
<th>EL³⁶</th>
<th>PFI³⁶</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sub-floor, damp, above ground</td>
<td>2</td>
<td>0.04</td>
<td>8.0</td>
<td>0.40</td>
<td>0.15</td>
<td>0.25</td>
<td>0.06</td>
<td>0.25</td>
<td>0.25</td>
<td>0.019</td>
<td>0.013²⁶</td>
</tr>
<tr>
<td>Exterior, above ground</td>
<td>3B</td>
<td>NL</td>
<td>8.0</td>
<td>0.40</td>
<td>0.15</td>
<td>0.25</td>
<td>0.06</td>
<td>0.25</td>
<td>0.25</td>
<td>0.019</td>
<td>0.013²⁶</td>
</tr>
<tr>
<td>Ground contact</td>
<td>4A</td>
<td>NL</td>
<td>10.0</td>
<td>0.50</td>
<td>0.40</td>
<td>0.40</td>
<td>0.15</td>
<td>0.40</td>
<td>NL</td>
<td>0.019</td>
<td>0.013²⁶</td>
</tr>
<tr>
<td>Out of contact with ground and continuously protected from liquid water</td>
<td>2</td>
<td>NL</td>
<td>NL</td>
<td>NL</td>
<td>0.15</td>
<td>NL</td>
<td>0.25</td>
<td>NL</td>
<td>0.25</td>
<td>0.019</td>
<td>0.013²⁶</td>
</tr>
<tr>
<td>Marine</td>
<td>5A, 5B, 5C</td>
<td>NL</td>
<td>25.0</td>
<td>NL</td>
<td>2.50</td>
<td>2.50</td>
<td>NL</td>
<td>NL</td>
<td>NL</td>
<td>NL</td>
<td>NL</td>
</tr>
</tbody>
</table>
###awpa standard

<table>
<thead>
<tr>
<th>Use Category System</th>
<th>Copper Naphthenatea</th>
<th>Creosoteb</th>
<th>Pentachlorophenole</th>
<th>ACO2</th>
<th>ACZa</th>
<th>CAC4</th>
<th>CCA7</th>
<th>SBRb</th>
<th>ELc4</th>
<th>PTE5</th>
</tr>
</thead>
<tbody>
<tr>
<td>FENCING</td>
<td></td>
</tr>
<tr>
<td>Pickets, slats, trim</td>
<td>3A, 3B</td>
<td>0.055</td>
<td>8.0</td>
<td>0.50</td>
<td>0.35</td>
<td>0.25</td>
<td>0.06</td>
<td>NP</td>
<td>NL</td>
<td>0.019</td>
</tr>
<tr>
<td>Posts, sawn</td>
<td>4A</td>
<td>NL</td>
<td>10.0</td>
<td>0.50</td>
<td>0.40</td>
<td>0.40</td>
<td>0.25</td>
<td>NP</td>
<td>NL</td>
<td>0.019</td>
</tr>
<tr>
<td>Posts, round</td>
<td>4A</td>
<td>0.055</td>
<td>8.0</td>
<td>0.40</td>
<td>0.40</td>
<td>0.25</td>
<td>0.06</td>
<td>NP</td>
<td>NL</td>
<td>0.019</td>
</tr>
<tr>
<td>Rail</td>
<td>3A, 3B</td>
<td>0.055</td>
<td>8.0</td>
<td>0.50</td>
<td>0.35</td>
<td>0.25</td>
<td>0.06</td>
<td>NP</td>
<td>NL</td>
<td>0.019</td>
</tr>
</tbody>
</table>

###highwater material

Lumber and timbers for bridges, structural members, decking, cribbling and culverts

Structural lumber and timbers:
- In saltwater use and subject to marine borer attack
- Please category and land and freshwater use
- Piling in saltwater use and subject to marine borer attack
- Posts: Round, half-round, quarter-round
- (General const. – fence posts, sign posts, handrails)
- Posts: Round, half-round, quarter-round
- In saltwater use and subject to brackish or saltwater splash
- In brackish or saltwater use and subject to marine borer attack

###awpa standard

<table>
<thead>
<tr>
<th>Use Category System</th>
<th>Copper Naphthenatea</th>
<th>Creosoteb</th>
<th>Pentachlorophenole</th>
<th>ACO2</th>
<th>ACZa</th>
<th>CAC4</th>
<th>CCA7</th>
<th>SBRb</th>
<th>ELc4</th>
<th>PTE5</th>
</tr>
</thead>
<tbody>
<tr>
<td>LUMBER</td>
<td></td>
</tr>
<tr>
<td>Above ground</td>
<td>3B</td>
<td>0.04</td>
<td>8.0</td>
<td>0.40</td>
<td>0.40</td>
<td>0.25</td>
<td>0.06</td>
<td>NP</td>
<td>NL</td>
<td>0.019</td>
</tr>
<tr>
<td>Ground contact and freshwater use</td>
<td>4A</td>
<td>0.06</td>
<td>10.0</td>
<td>0.50</td>
<td>0.40</td>
<td>0.40</td>
<td>0.25</td>
<td>NP</td>
<td>NL</td>
<td>0.019</td>
</tr>
</tbody>
</table>

###awpa standard

<table>
<thead>
<tr>
<th>Use Category System</th>
<th>Copper Naphthenatea</th>
<th>Creosoteb</th>
<th>Pentachlorophenole</th>
<th>ACO2</th>
<th>ACZa</th>
<th>CAC4</th>
<th>CCA7</th>
<th>SBRb</th>
<th>ELc4</th>
<th>PTE5</th>
</tr>
</thead>
<tbody>
<tr>
<td>MARINE LUMBER AND TIMBERS</td>
<td></td>
</tr>
<tr>
<td>Members above ground and out of water but subject to saltwater splash</td>
<td>4B, 4C</td>
<td>0.06 – 0.75</td>
<td>10.0 – 12.0</td>
<td>0.50 – 0.60</td>
<td>0.60</td>
<td>0.60</td>
<td>0.31</td>
<td>0.60</td>
<td>NL</td>
<td>NL</td>
</tr>
<tr>
<td>In brackish or saltwater use and subject to marine borer attack</td>
<td>5A, 5B, 5C</td>
<td>NL</td>
<td>25.0</td>
<td>NL</td>
<td>NL</td>
<td>2.50</td>
<td>NL</td>
<td>2.50</td>
<td>NL</td>
<td>NL</td>
</tr>
</tbody>
</table>

###awpa standard

<table>
<thead>
<tr>
<th>Use Category System</th>
<th>Copper Naphthenatea</th>
<th>Creosoteb</th>
<th>Pentachlorophenole</th>
<th>ACO2</th>
<th>ACZa</th>
<th>CAC4</th>
<th>CCA7</th>
<th>SBRb</th>
<th>ELc4</th>
<th>PTE5</th>
</tr>
</thead>
<tbody>
<tr>
<td>PILES</td>
<td></td>
</tr>
<tr>
<td>Foundation, land and freshwater use (round)</td>
<td>4C</td>
<td>0.10 – 0.14</td>
<td>12.0 – 17.0</td>
<td>0.65 – 0.85</td>
<td>0.80</td>
<td>0.80 – 1.0</td>
<td>0.80 – 1.0</td>
<td>NL</td>
<td>NL</td>
<td>0.019</td>
</tr>
<tr>
<td>Marine (round) in salt or brackish and subject to marine borer attack</td>
<td>5A, 5B, 5C</td>
<td>NL</td>
<td>16.0 – 20.0</td>
<td>NL</td>
<td>NL</td>
<td>1.50 – 2.50</td>
<td>1.50 – 2.50</td>
<td>NL</td>
<td>NL</td>
<td>0.019</td>
</tr>
<tr>
<td>Marine, dual treatment (round) for maximum protection</td>
<td>5B, 5C</td>
<td>NL</td>
<td>20.0</td>
<td>NL</td>
<td>NL</td>
<td>1.0</td>
<td>1.0</td>
<td>NL</td>
<td>NL</td>
<td>0.019</td>
</tr>
<tr>
<td>Sawn timber piles</td>
<td>4B, 4C</td>
<td>0.075</td>
<td>10.0 – 12.0</td>
<td>0.50</td>
<td>0.60</td>
<td>0.60 – 0.80</td>
<td>0.60 – 0.80</td>
<td>NL</td>
<td>NL</td>
<td>0.019</td>
</tr>
</tbody>
</table>

###awpa standard

<table>
<thead>
<tr>
<th>Use Category System</th>
<th>Copper Naphthenatea</th>
<th>Creosoteb</th>
<th>Pentachlorophenole</th>
<th>ACO2</th>
<th>ACZa</th>
<th>CAC4</th>
<th>CCA7</th>
<th>SBRb</th>
<th>ELc4</th>
<th>PTE5</th>
</tr>
</thead>
<tbody>
<tr>
<td>PLYWOOD</td>
<td></td>
</tr>
<tr>
<td>Sub-floor, damp, above ground</td>
<td>2</td>
<td>0.04</td>
<td>8.0</td>
<td>0.40</td>
<td>0.15</td>
<td>0.25</td>
<td>0.06</td>
<td>0.25</td>
<td>0.025</td>
<td>0.019</td>
</tr>
<tr>
<td>Exterior, above ground</td>
<td>3B</td>
<td>NL</td>
<td>8.0</td>
<td>0.40</td>
<td>0.15</td>
<td>0.25</td>
<td>0.06</td>
<td>0.25</td>
<td>0.025</td>
<td>0.019</td>
</tr>
<tr>
<td>Ground contact</td>
<td>4A</td>
<td>NL</td>
<td>10.0</td>
<td>0.50</td>
<td>0.40</td>
<td>0.40</td>
<td>0.15</td>
<td>0.40</td>
<td>0.025</td>
<td>0.019</td>
</tr>
<tr>
<td>Out of contact with ground and continuously protected from liquid water</td>
<td>2</td>
<td>NL</td>
<td>NL</td>
<td>NL</td>
<td>0.15</td>
<td>0.15</td>
<td>0.06</td>
<td>0.25</td>
<td>0.025</td>
<td>0.019</td>
</tr>
<tr>
<td>Marine</td>
<td>5A, 5B, 5C</td>
<td>NL</td>
<td>25.0</td>
<td>NL</td>
<td>NL</td>
<td>2.50</td>
<td>NL</td>
<td>2.50</td>
<td>NL</td>
<td>NL</td>
</tr>
</tbody>
</table>

Notes:
- 1 Copper Naphthenate
- 2 Creosote-Coal Tar Creosote
- 3 Pentachlorophenol may be dissolved with several solvents. The solvents specified in AWPA P-9 are Type A – Creosote, Type C – Light Hydrocarbon solvent with auxiliary solvent, Type C where conditions require cleanliness and ability for staining.
- 4 Alkaline Copper Quaternary
- 5 Inorganic Copper Zinc Arsenate
- 6 Copper Azole
- 7 Chromated Copper Arsenate
- 8 Inorganic Boron (500, 1000)
- (Diisobutylcarbinol Tetrabromide)
- **- Retention of 0.25 pcf DOT is equivalent to 0.17 pcf DOT for Non-Ferromagnetic Termite exposure**
- **- Retention of 0.42 pcf DOT is equivalent to 0.28 pcf DOT for Ferromagnetic Termite exposure**
- **Douglas Fir only**
- **Western red Cedar, Southern Pine only**
- **Douglas Fir, Western Hemlock, Southern Pine only**
- **Lodgepole Pine, Southern Pine only**
- 11 After gluing
- 12 Before gluing
- 13 DC01-Imidacloprid-Stabilizer
- 14 Pentachloroethene Tetrabromide
- 15 For certain species, use of an accepted water repellent additive above 0.013 pcf